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Stress Analysis of Generally Asymmetric Single Lap
Adhesively Bonded Joints

Jungmin Lee
Hyonny Kim
School of Aeronautics and Astronautics, Purdue University,
West Lafayette, Indiana, USA

An analysis is presented that predicts shear and peel stresses in an adhesively
bonded single lap joint having general asymmetric configuration. The single lap
joint is under tension loading together with moments induced by geometric eccen-
tricity. Because these eccentricity moments are the key elements of this analysis, a
general relationship between the eccentricity moments and simple geometric
moments has been determined with the aid of finite element analysis (FEA).
Example calculations show that the shear- and peel-stress profiles from the
closed-formmodel are well matched to FEA results except in the small regions near
the free ends of the joints, because of the shear lag basis of the model. For asymmet-
ric joints, the model predictions are more accurate for the case of modulus eccen-
tricity than thickness eccentricity. Elastic-limit load predictions accounting
for both shear and peel stress in the adhesive have been used to find optimal joint
configurations between asymmetric adherends.

Keywords: Asymmetric joint; Shearlag; Beam on elastic foundation; Elastic limit load

NOMENCLATURE

c ¼ half overlap length of joint
Di ¼ bending stiffness of adherends
Ea ¼ Young’s modulus of adhesive
Ei ¼ Young’s modulus of adherends
Error 1, Error 2 ¼ error function 1 and 2
Ga ¼ shear modulus of adhesive
k ¼ spring constant for beam on elastic foundation, see Eq. 13
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Mi ¼ internal moment resultants in adherends
Mi ¼ moment boundary conditions, see Eqs. 21 and 24
MTOT ¼ total moment, MTOT ¼ M1

�� ��þ M2

�� ��
Nf ¼ failure load at elastic limit of adhesive
Ni ¼ internal in-plane axial stress resultants in adherends
Nx ¼ external tension loading applied to joint
Qi ¼ internal transverse shear resultants in adherends
Qi ¼ shear boundary conditions, see Eq. 22 and 25
ta ¼ thickness of adhesive
ti ¼ thickness of adherends
ui ¼ in-plane displacement component in adherends
wi ¼ out-of-plane displacement component in adherends
~ww ¼ relative out-of-plane displacements, ~ww ¼ w1 �w2

x ¼ longitudinal coordinate
zi ¼ transverse coordinate in adherends
b ¼ beam on elastic foundation stiffness constant, see Eq. 16
ca ¼ shear strain in adhesive
D ¼ ratio of M1 over MTOT

exi ¼ in-plane extensional strain in adherends
g ¼ geometric and material constants, see Eq. 38
k ¼ geometric and material constants, see Eq. 37
n ¼ eccentricity-geometric moment conversion factor, see Eq. 55
rp ¼ peel stress at adherend-bond interface
sa ¼ shear stress in adhesive
save ¼ average adhesive shear stress
sy ¼ yield stress of adhesive

Subscript

i ¼ adherend 1 or 2

INTRODUCTION

A closed-form model is developed that predicts shear and peel stresses
in adhesively bonded single lap joints loaded by both in-plane tension
force and by moments induced from the geometric eccentricity of the
joint. This model computes shear stress based on shear lag assump-
tions and predicts peel stress using a beam on elastic foundation
(BOEF) approach. By accounting for the coupling of peel stress terms
within the shear governing equation, this model permits the stress
analysis of general asymmetric joints, that is, joints that have adher-
ends of mismatched elastic modulus and thickness.
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Classical analyses, based on shear lag, have been previously
developed to predict only the adhesive shear stress in bonded joints
of uniform bondline thickness for a symmetric joint with tension load
only [1, 2]. Improvements to the classical model include predicting peel
stress and edge moments in single lap joints [3–6], accounting for
plasticity in the adhesive prior to failure [7, 8], and allowing for trans-
verse shear deformation of the symmetric adherends [9]. Kim [10] has
extended the classical model to predict the effects of bondline thick-
ness variation along the overlap dimension.

When the joint is simplified to a symmetric joint, the shear and peel
governing equations are fully decoupled and the edge moments can
be calculated from simple geometry of the joint. Thus, Goland and
Reissner [3] assumed a uniform rotation of the symmetric joint with
corresponding edge moments. Ojalvo and Eidinoff [4] and Oplinger
[5] derived coupled governing equations based on plate theory in the
manner first introduced by Goland and Reissner [3] and noticed that
the joint rotates nonlinearly as a function of the applied tension load.
This rotation of the joint should be accounted for when calculating the
moment boundary conditions (defined as edge moments); however,
only the symmetric joint case was analyzed and edge moments were
calculated based on uniform joint rotation.

Kline [6] presented a general joint analysis theory that accounts for
asymmetry of the joint, but only a symmetric joint was analyzed.
Delale, Erdogan, and Aydinoglu [11] extended Goland and Reissner’s
approach for symmetric joints by formulating the adhesive shear
stress equation to account for asymmetric adherends. For the asym-
metric single lap joint, Delale, Erdogan, and Aydinoglu [11] suggest
that the eccentricity moment boundary conditions acting on the both
ends of the single lap joint can be calculated as a simple multiplication
of tension loading and geometric eccentricity of the joint, and that the
moments have the same magnitude but opposite direction. With the
suggested moment boundary conditions previously described, the
authors of the present work have found that the resulting adhesive
shear-stress profile will not satisfy force equilibrium with the applied
tension load. Similar approaches for the asymmetric joints are pre-
sented by Yang and Pang [12], Bigwood and Crocombe [13], Mortensen
and Thomson [14], and Wu, Romeijn, and Wardenier [15], but no
closed-form solution was successfully derived for the generally asym-
metric case, with boundary conditions defined such that the predicted
shear-stress profile equilibrates with the applied loading. In these
papers, the edge moments are treated as known input parameters.

Tong [16] established peel and shear governing equations based
on equilibrium of the asymmetric joint. Strain energy release rate
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was calculated from those equations to predict failure only for the
symmetric case, however, and thus the asymmetric problem was left
unsolved (in closed form). Fernlund et al. [17] computed critical
energy release rate as a function of the mode of loading for the
cracked lap shear joint, single lap shear joint, and double strap joint.
Moments at both ends of the joint were treated as known input
parameters and failure load of the joint is compared with experi-
mental results. Adams [18] reviewed classical linear closed-form
solutions by Volkerson [1] and Goland and Reissner [3]. Improve-
ments such as adding nonlinear material properties and accounting
for realistic adhesive geometry were presented by the finite element
method. Adams suggested that finite element analysis was the best
way for treating nonlinear mechanics and material behavior in
real joints.

To the authors’ best knowledge, there are no closed-form analytical
works that are applicable to generally asymmetric joints with com-
bined tension loading and self-induced eccentricity moments whose
stress solutions satisfy force equilibrium. A difficulty of this analysis
lies in the definition of the moment boundary conditions. It is found
that the moment boundary conditions simply calculated from the geo-
metric eccentricity of the joint can yield adhesive stress profiles that
do not satisfy force equilibrium. In this work, finite element analysis
(FEA) that accurately predicts the shear- and the peel-stress profiles
in bonded single lap joints are used to guide the development of ana-
lytical relationships between the geometrically calculated eccentricity
moments, which can be known a priori, and moment boundary con-
ditions that insure equilibrium of the stress profiles relative to the
externally applied load.

MODEL DESCRIPTION

A general single lap joint with all relevant geometric parameters is
shown in Figure 1. The only externally applied load is the in-plane
force (per unit width), Nx. A differential element of the joint at any
location x is shown in Figure 2 together with all internal stress and
stress resultant quantities. The vertical axes z1 and z2 are defined
from the bottom of adherends 1 and 2. The following assumptions
are made for the single lap joint:

. adherends and adhesive have constant thickness,

. adhesive carries shear and peel stresses only,

. uniform shear- and peel-stress profiles through the adhesive thick-
ness (z direction),
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. adherends do not deform because of transverse shear, and

. linear elastic material behavior.

Using Figure 2, the force and moment equilibrium equations of adher-
ends 1 and 2 can be determined and are listed in Equations (1)–(6).
Note that higher order terms in the moment equilibrium have been
neglected:

dN1

dx
¼ sa ð1Þ

dQ1

dx
¼ �rp ð2Þ

dM1

dx
¼ Q1ðxÞ þ

t1
2
sa ð3Þ

dN2

dx
¼ �sa ð4Þ

dQ2

dx
¼ rp ð5Þ

dM2

dx
¼ Q2ðxÞ þ

t2
2
sa: ð6Þ

These relationships will be used throughout the derivation of gov-
erning equations for shear and peel stress components within the
adhesive. Note that only the joint region is being modeled,
�c � x � c. The extra adherend regions shown in Figure 1 are not
accounted for when deriving governing equations for shear and peel
stresses in the adhesive.

FIGURE 1 Adhesively bonded single lap joint.
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SHEAR STRESS

To determine shear stress distribution within the adhesive, the classi-
cal shear lag assumption has been adopted. The shear strain in the
adhesive is determined from the relative in-plane displacements of

FIGURE 2 Differential element of single lap joint.
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the adherends at the adhesive–adherend interfaces.

ca ¼ 1

ta
ðu1jz1¼0 �u2jz2¼t2

Þ: ð7Þ

Differentiating Equation (7) with respect to x yields

dca
dx

¼ 1

ta
ðex1jz1¼0 � ex2jz2¼t2

Þ ð8Þ

where ex1 and ex2 are the longitudinal strains of adherends 1 and 2,
respectively.

Both axial loading and bending moments are accounted for when
constructing the longitudinal strain profile, ex, in each adherend.

ex1 ¼ N1

E1t1
�M1

D1
z1 �

t1
2

� �
; 0 � z1 � t1 ð9Þ

ex2 ¼ N2

E2t2
�M2

D2
z2 �

t2
2

� �
; 0 � z2 � t2 ð10Þ

where N1 and N2 are the in-plane axial stress resultants, M1 and M2

are the internal moment resultants, and D1 and D2 are the bending
rigidity for the adherends 1 and 2, respectively. Note that the adhesive
shear stress, sa, acting on the interfaces of the adhesive and the adher-
ends (see Figure 2) is not accounted for in the bending contributions to
the longitudinal strain component of each adherend.

Substituting Equations (9) and (10) into Equations (8) yields

dca
dx

¼ 1

ta

N1

E1t1
� N2

E2t2

� �
þ 1

ta

M1t1
2D1

þM2t2
2D2

� �
: ð11Þ

Differentiating Equation (11) with respect to x once more and sub-
stituting in Equations (1), (3), (4), and (6) yields the adhesive shear
stress, sa, which can be written in terms of the adhesive shear strain,
ca, and shear modulus, Ga, for a linear elastic adhesive.

d2ca
dx2

¼ Ga

ta

1

E1t1
þ 1

E2t2

� �
þ 1

4

t21
D1

þ t22
D2

� �� �
ca

þ 1

2ta

t1
D1

Q1 þ
t2
D2

Q2

� �
ð12Þ

Equation (12) is the governing equation of the shear strain in the
adhesive. Note that this governing equation is coupled with transverse
shear-stress resultants within the adherends, Q1 and Q2, which can be
calculated from the beam transverse deflections upon solving for the
peel-stress profile.
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PEEL STRESS

To calculate peel stress, the single lap joint is modeled by two simple
beams connected by a distributed elastic spring bed, as shown in
Figure 3. The spring constant, k, is chosen as a combination of
adhesive Young’s modulus, Ea, and thickness of the adhesive, ta:

k ¼ Ea

ta
: ð13Þ

In this joint, the tension loading Nx produces a shear stress, saðxÞ,
along the adherends and the adhesive interfaces. Also moments,
M1ðxÞ and M2ðxÞ are induced through the adherends from the geo-
metric eccentricity of the joint. These eccentricity bending moments
are responsible for the peel stress component, rpðxÞ.

A fourth-order linear differential equation for the relative vertical
displacement, ~ww, based on beam-on-elastic-foundation (BOEF) interac-
tion between the adherends, can be derived.

d4 ~ww

dx4
þ k

1

D1
þ 1

D2

� �
~ww ¼ 0 ð14Þ

where ~ww ¼ w1 �w2 is the relative vertical displacement components of
the adherends 1 and 2. Equation (14) is solved for the relative vertical
displacement, ~ww; by the general solution

~wwðxÞ ¼ ebxðC1 cos bxþ C2 sin bxÞ þ e�bxðC3 cos bxþ C4 sin bxÞ ð15Þ

where

b ¼ 1ffiffiffi
2

p k
1

D1
þ 1

D2

� �� �1=4
: ð16Þ

FIGURE 3 Beam on elastic foundation, peel stress model.
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C1 to C4 are constants and can be found from boundary conditions
of the joint. The peel stress can then be calculated from Equation
(15) as

rpðxÞ ¼ k ~ww ¼ kðw1 �w2Þ: ð17Þ

BOUNDARY CONDITIONS

Four boundary conditions are needed to determine the four coeffi-
cients C1 to C4 in Equation (15). General boundary conditions of the
joint are shown in Figure 4 and are presented in Equations (18)–(29).

At x ¼ �c,

M1ð�cÞ ¼ D1
d3w1

dx2
¼ 0; ð18Þ

Q1ð�cÞ ¼ D1
d3w1

dx3
¼ 0; ð19Þ

N1ð�cÞ ¼ 0; ð20Þ

M2ð�cÞ ¼ D2
d2w2

dx2
¼ M2; ð21Þ

Q2ð�cÞ ¼ D2
d3w2

dx3
¼ Q2; ð22Þ

FIGURE 4 Single lap joint boundary conditions.
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and

N2ð�cÞ ¼ Nx: ð23Þ

At x ¼ c,

M1ðcÞ ¼ D1
d2w1

dx2
¼ M1; ð24Þ

Q1ðcÞ ¼ D1
d3w1

dx3
¼ Q1; ð25Þ

N1ðcÞ ¼ Nx; ð26Þ

M2ðcÞ ¼ D2
d2w2

dx2
¼ 0; ð27Þ

Q2ðcÞ ¼ D2
d3w2

dx3
¼ 0; ð28Þ

and

N2ðcÞ ¼ 0: ð29Þ

Note that Q1, Q2, M1, and M2 depend on the specific boundary con-
ditions at the ends of the joint and in general are not known a priori.

The boundary conditions in Equations (18)–(29) must be expressed
in terms of the relative displacement, ~ww, so as to be compatible with
Equation (15).

At x ¼ �c,

d2 ~ww

dx2

����
x¼�c

¼ �M2

D2
ð30Þ

and

d3 ~ww

dx3

����
x¼�c

¼ �Q2

D2
: ð31Þ

At x ¼ c,

d2 ~ww

dx2

����
x¼c

¼ M1

D1
ð32Þ
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and

d3 ~ww

dx3

����
x¼c

¼ Q1

D1
: ð33Þ

SOLUTION PROCEDURE

The boundary conditions specified by Equations (30)–(33) are used to
solve for the four coefficients C1–C4 in Equation (15). The assumption
is now made that the left-hand side of the joint is fixed at x ¼ �c, and
the right hand side at x ¼ c, can translate in the z direction but not
rotate. These conditions are illustrated in Figure 5. Thus, Q1 and Q2

are zero but M1 and M2 are unknown because the chosen boundary
conditions make the problem statically indeterminate. Real structures
with significant unbonded length, for example, the thin skin of an air-
craft in a single lap splice joint, would not have the transverse dis-
placement constraint which exists when testing a lap joint in a test
machine. Therefore, the transverse displacement was not confined.
However, to preserve consistency of the loading direction, the con-
dition of no rotation was enforced. This free translation with condition
of no rotation results in a considerable moment reaction, producing
larger shear and peel stresses in the joint than the case of fixed trans-
lation with free rotation (typically assumed in other works). Therefore,
the chosen boundary conditions can be considered as conservative.

The substitution of Equation (15) into Equations (30)–(33) can be
expressed as a system of linear equations from which the coefficients
C1–C4 can be determined. This result is presented in compact form

FIGURE 5 Single lap joint geometric constraints.
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by the aid of the groupings of terms h1–h9, which are listed in the
Appendix in Equations (A1)–(A9). The coefficients to Equation (15),
C1–C4, are written in terms of h1–h9 and are listed in the Appendix
in Equations (A10)–(A13).

Once the unknown moments M1 and M2 are determined, Equations
(15) and (17) can be used to compute the peel stress in the adhesive.
Recall the shear strain governing equation [Equation (12)] requires
the internal transverse shear-force profiles in the adherends. These
can be found by integrating Equations (2) and (5) with respect to x
to get Q1ðxÞ and Q2ðxÞ, which will be substituted into Equation (12),

Q1ðxÞ ¼ �
Z
k ~wwðxÞdxþ C5 ð34Þ

and

Q2ðxÞ ¼
Z
k ~wwðxÞdxþ C6; ð35Þ

where C5 and C6 are integration constants and can be found from
Equations (19) and (28) C5 and C6 are listed in the Appendix in Equa-
tions (A14) and (A15).

Substitute Equations (34) and (35) into Equation (12) to obtain the
final shear-strain governing equation:

d2ca
dx2

� k2ca ¼ g
Z
k ~wwðxÞdxþ f ð36Þ

where

k2 ¼ Ga

ta

1

E1t1
þ 1

E2t2

� �
þ 1

4

t21
D1

þ t22
D2

� �� �
; ð37Þ

g ¼ 1

2ta

t1
D1

� t2
D2

� �
; ð38Þ

and

f ¼ 1

2ta

t1
D1

C5 þ
t2
D2

C6

� �
: ð39Þ

Equation (36) is a second-order ordinary differential equation with
constant coefficients. The solution consists of a homogeneous and a
particular solution:

caðxÞ ¼ cha þ cpa ð40Þ
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The homogeneous solution is

chaðxÞ ¼ C7 coshðkxÞ þ C8 sinhðkxÞ: ð41Þ

The particular solution is

cpaðxÞ ¼ ebx½C9 cosðbxÞ þ C10 sinðbxÞ�
þ e�bx½C11 cosðbxÞ þ C12 sinðbxÞ� þ C13 ð42Þ

where C7–C13 are constants. C9–C13 are found by substituting Equa-
tion (42) into Equation (36) and comparing both sides. The end result
is listed in the Appendix in Equations (A18) to (A22). The remaining
unknown constants, C7 andC8, are determined using the in-plane force
and moment boundary conditions listed within Equations (18)–(29).
These can be expressed as gradients in shear strain using Eq. (11).

At x ¼ �c,

dca
dx

����
x¼�c

¼ � Nx

E2t2ta
þ t2
2D2ta

M2: ð43Þ

At x ¼ c,

dca
dx

����
x¼c

¼ Nx

E1t1ta
þ t1
2D1ta

M1: ð44Þ

The complete solution, Equation (40), should satisfy the trans-
formed boundary conditions, resulting in the constants C7 and C8,
which are listed in the Appendix as Equations (A16) and (A17).

Now, the shear-strain governing equation [Equation (12)] and the
peel-stress governing equation [relative displacement ~ww, Equation
(14)] are solved as a function of x in terms of the joint parameters
and the yet to-be-determined induced moment boundary conditions,
M1 and M2. The determination of these moments is described in the
following sections.

DETERMINING M1 AND M2

Shear- and peel-stress profiles along the joint can be calculated if �MM1

and M2 are known. Because the joint is statically indeterminate (see
Figure 5), these moment reactions cannot be solved a priori using stat-
ics and geometric eccentricity. Furthermore, compatibility equations
to solve for the redundant moment reaction requires the solution of
the load transfer between adherends, which is what is being sought-
and, therefore, such an approach is not possible. M1 and M2 can,

Stress Analysis of Single Lap Joints 455

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



however, be found by iteration, subject to the condition that the pre-
dicted adhesive stress profiles satisfy force equilibrium. Comparison
with FEA is needed to find out the best values of these two unknowns.
Later, it is shown that M1 and M2 can be determined a priori by
material and geometric parameters.

Two-dimensional full-integration plane strain four-node elements
CPE4 in ABAQUS [19] were used to model joints having the same
boundary conditions as specified in Figure 5. Six elements were used
through the adhesive thickness. Althoughmaterial behavior was limited
to the linearly elastic regime, nonlinear geometric effects were
accounted for. The joint parameters in Table 1 were used for FEA mod-
eling. Overall and close-up views of the mesh are shown in Figure 6.
Note that this FEA model includes a small amount of unbonded adher-
end regions at both sides of the joint, which are not included in the ana-
lytical model, shown in Figure 4. Both boundaries of the adherends were
fixed against rotation and uniform x-direction displacement was applied
at the right boundary of adherend 1. The right boundary of adherend 1
can freely translate along the z direction, whereas the left boundary of
adherend 2 was fixed in all degrees of freedom. Shear- and peel-stress
values were taken from the path along the adhesive midplane.

The results of the FEA are used to determine appropriate values for
M1 and M2 in the analytical model (later, it will be shown that M1 and
M2 can be specified without FEA). It was found that there is a unique
constant MTOT ¼ M1

�� ��þ M2

�� �� that always satisfies equilibrium of
shear stress in the joint (i.e., integration of shear stress balances Nx):Z c

�c

sadx ¼ Nx: ð45Þ

Hence, M1 and M2 are related to each other. Note that M2 is a
negative quantity for tensile loading Nx (see Figure 4). A positive

TABLE 1 Joint Parameters and Load for Single Lap Joint (t2=t1 ¼ 2)

Joint parameters Value

t1 (mm) 1.24
t2 (mm) 2.48
ta (mm) 0.33
E1, E2 (GPa) 27.7
D1 (N �mm) 4.40� 10�3

D2 (N �mm) 35.2�10�3

Ga (GPa) 0.927
Nx (MN=mm) 17.5
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independent variable, D, is introduced to relate M1 and M2 with MTOT:

M1 ¼ D �MTOT ð46Þ

and

M2 ¼ MTOTðD� 1Þ: ð47Þ

MTOT should, therefore, be first established, and that can be done by
simply setting eitherM1 orM2 to zero. OnceMTOT is found,M1 andM2

are determined by varying D and comparing the resulting peel- and
shear-stress predictions with the FEA results. For example, when
the applied tension load, Nx, is 17.5MN=mm, MTOT was 49.0 MN=mm.
Only this unique value of MTOT will satisfy Equation (45) for any com-
bination of M1 and M2. D is defined to a ratio of M1 over MTOT and will
vary from 0 to 1. D is varied incrementally between 0 to 1 and the cal-
culations are repeated until the shear and peel stress profiles are best
matched by minimization of the error functions:

Error 1 ¼
XN
i¼1

�
rFEAp ðxiÞ � rASp ðxiÞ

�2
ð48Þ

FIGURE 6 FEA mesh.

Stress Analysis of Single Lap Joints 457

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



and

Error 2 ¼
XN
i¼1

�
sFEAa ðxiÞ � sASa ðxiÞ

�2
: ð49Þ

In Equations (48) and (49), the superscript AS refers to the analyti-
cal solution (AS). The AS has been divided into N discrete points,
matching the location of points extracted from the FEA solution.
Because the FEA is a linearly elastic model, the corner locations at
the adhesive–adherend interfaces are actually stress singularity
points. Also, the shear stress profile from the FEA satisfies the trac-
tion-free boundary condition at both ends of the joint, whereas the
shear-lag-based analytical predictions cannot satisfy this condition.
For these reasons, error functions comparing the stresses over the
entire solution domain have been used in choosing end moment
values, resulting in best matching shear- and peel-stress profiles,
rather than simply comparing the solutions at the ends of the overlap.
This approach is justified because the singular region composes
less than 1% of the solution domain for realistic adhesive bondline
thickness.

In Figure 7, the error functions 1 and 2 are plotted for a D increment
of 0.05. A summation of error function 1 and 2 is defined as Errorsum
and plotted with respect to the variation of D. The minimum point of
this Errorsum function is chosen as the best match of the analytical
peel- and shear-stress predictions with the FEA results. In Figure 8,
the shear- and peel-stress profiles corresponding to the best match
choice of D (D ¼ 0:13 for this test case) are plotted. Note that saðxÞ
and rpðxÞ are normalized with respect to average shear stress:

save ¼
Nx

2c
: ð50Þ

From Figures 7 and 8, it is clear that other criteria for choosing D
would yield a better fit to the sa profile at the cost of a worse fit to
the peel stress. The methodology presented herein, however, always
results in an overprediction of both sa and rp stresses and can, there-
fore, be considered as conservative.

This methodology for determining the best choice of D always
requires some baseline profile for comparison, namely FEA. Because
having to generate a FEA model to find the M1 and M2 boundary
conditions negates the benefit of having a closed-form model, a
simple relationship is now sought between simple geometrically calcu-
lated moments, and the moment boundary conditions M1 and M2.
Geometric moments M1 and M2 based on a zero adhesive-thickness
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geometry are chosen to establish this relationship. The choice of
neglecting the adhesive thickness has been made because the BOEF
peel-stress solution does account for ta:

M1 ¼
Nx

2
t1 ð51Þ

and

M2 ¼ �Nx

2
t2: ð52Þ

Comparison of M1 and M2, found by this process (relying on FEA),
with M1 and M2 over a wide range of asymmetric joints (t1 6¼ t2 and
E1 6¼ E2), is shown in Table 2. Note that the thickness and modulus
of adherend 2 are fixed in Table 2; t2 ¼ 2:48mm and E2 ¼ 27:7Gpa.
This comparison is accomplished in two ways: (1) independently vary-
ing adherend 1 thickness, t1, with respect to adherend 2 thickness, t2,
while E1 is equal to E2, or (2) independently varying adherend 1

FIGURE 7 Error functions versus D.
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Young’s modulus, E1, with respect to adherend 2 Young’s modulus, E2,
while t1 is equal to t2. The following general relationship between the
moments has been found by direct comparison of M1 with M1 and M2

with M2:

M1 ¼ n �M1 ð53Þ

FIGURE 8 Best-fitted peel and shear stress profiles to FEA; asymmetric
joint, t2 ¼ 2t1.
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and

M2 ¼
1

n
�M2 ð54Þ

where

n ¼ E1

E2

� �1=2 t1
t2
: ð55Þ

Now, the moment boundary conditions M1 and M2 can be computed
a priori using the geometric moments, as shown in Equations (53) and
(54).

CASE STUDIES

The closed-form solution is demonstrated using three example calcu-
lation case studies. The first case study is a symmetric joint, E1 ¼ E2

and t1 ¼ t2. The second case study is an asymmetric joint with only
adherend-thickness mismatch, t1 ¼ t2=3 and E1 ¼ E2. The last case
study is an asymmetric joint with only adherend-modulus mismatch,
E1 ¼ E2=3 and t1 ¼ t2. These parameters are listed in Table 3.

For each case study, the normalized peel- and shear-stress profiles
are plotted in Figures 9–11 and compared with the corresponding FEA
results taken along the adhesive midplane. In all FEA models, shear-
stress profiles satisfy the zero traction condition at both free ends
of the joint. Note that this condition cannot be satisfied from the
shear-lag-based analytical predictions because of the way shear strain
is calculated [see Equation (7)]. Therefore, the analytical method
that predicts maximum shear- and peel-stresses at both free ends

TABLE 2 M1 and M2 versus M1 and M2

M1 (MN �mm) M2 (MN �mm) M1 (MN �mm) M2 (MN �mm)

E1 ¼ E2:

t1 ¼ 3t2 198 �7.28 65.1 �21.7
t1 ¼ 2t2 87.1 �11.0 43.4 �21.7
t1 ¼ t2=2 5.54 �43.5 10.8 �21.7
t1 ¼ t2=3 2.43 �65.4 7.23 �21.7

t1 ¼ t2:
E1 ¼ 3E2 37.7 �12.6 21.7 �21.7
E1 ¼ 2E2 30.8 �15.4 21.7 �21.7
E1 ¼ E2=2 15.5 30.5 21.7 �21.7
E1 ¼ E2=3 12.7 �37.5 21.7 �21.7
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generally overpredicts stress values at these locations, relative to
the FEA calculations. The symmetric case matches the FEA solution
closely, whereas the asymmetric cases analyzed deviate more. Mis-
matches in adherend thickness result in more overprediction than
modulus asymmetry.

As expected, the symmetric case (Figure 9) predicts symmetric
shear- and peel-stress profiles about x ¼ 0. The two asymmetric cases
both involve increasing the stiffness of adherend 2, while keeping
adherend 1 the same. In both cases, the peel-stress profile is predicted
to be almost symmetric (see Figures 10 and 11). However, for t2 ¼ 3t1
(Figure 10), the shear stress is predicted to be higher at x ¼ �c than at
x ¼ c. This result is the opposite of what the simple shear lag models
(without bending effect) would predict. For E2 ¼ 3E1, the maximum
shear stress occurs at x ¼ c, as expected per simple shear lag models.
Because the thickness of the adherends affects their bending stiffness
at a faster rate than the modulus, this reversal of behaviors can be
attributed to bending effects. Such effects clearly must be accounted
for in single lap joint analysis.

JOINT FAILURE PREDICTION

In the previous sections, an applied load, Nx, was chosen such that no
yielding occurs within the adhesive. The constitutive behavior of a
typical structural epoxy adhesive is plotted in Figure 12 together with
an equivalent elastic=perfectly plastic constitutive curve. Equivalency
is defined such that the area below the elastic=perfectly plastic curve
is equal to the area below the experimentally measured stress-strain
curve, or A1 ¼ A2 in Figure 12. Based on this criterion, the shear yield
stress, sy, can be selected for adhesives that do not show distinct

TABLE 3 Joint Parameters for Single Lap Joint Case Studies

Case I: Case II: Case III:
Joint parameters symmetric joint t1 ¼ 1=3 t2 E1 ¼ 1=3 E2

t1 (mm) 2.48 0.83 2.48
t2 (mm) 2.48 2.48 2.48
ta (mm) 0.33 0.33 0.33
E1 (GPa) 27.7 27.7 9.23
E2 (GPa) 27.7 27.7 27.7
D1 (N �mm) 3.5� 10�2 1.3� 10�3 1.2�10�2

D2 (N �mm) 3.5� 10�2 3.5� 10�2 3.5�10�2

Ga (GPa) 0.927 0.927 0.927
Nx (MN=mm) 17.5 17.5 17.5
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yielding behavior. Evaluation of joint failure, based on the adhesive
reaching this elastic limit, must account for both the shear- and
peel-stress components. For this purpose, the von Mises yield criterion
is used:

3s2a þ r2p � 3s2y : ð56Þ

FIGURE 9 Peel and shear stress profiles for Case I: symmetric joint.
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This criterion would be applied at locations x ¼ c and x ¼ �c, where
sa and rp are maximum. For asymmetric joints, yielding will generally
occur on one side of the joint first. The applied load Nx associated with
the onset of yielding is defined as the elastic limit load Nf .

The effect of in-plane stiffness ratio, E1t1=E2t2, on the elastic limit
load is investigated over the range 0:01 � E1t1=E2t2 � 20. This range

FIGURE 10 Peel and shear stress profiles for Case II: asymmetric joint,
t2 ¼ 3t1.

464 J. Lee and H. Kim

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



is accomplished in two ways: (1) independently varying adherend 1
thickness, t1, while keeping E1 and the product E2t2 constant, or
(2) independently varying adherend 1 Young’s modulus, E1, while
keeping t1 and the product E2t2 constant. The anchor point for the
range of joint parameters investigated is the symmetric joint case,
where E1 ¼ E2, and t1 ¼ t2, as listed in Table 3, with adhesive behavior

FIGURE 11 Peel and shear stress profiles for Case III: asymmetric joint,
E2 ¼ 3E1.

Stress Analysis of Single Lap Joints 465

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



summarized in Figure 12. The elastic limit load, Nf , is plotted as a
function of stiffness ratio in Figures 13 and 14 for t1 and E1 variation,
respectively. Within each plot are separate contours expressing differ-
ent combinations of individual E2 and t2 values such that the product
E2t2 remains a constant value of 68.7 kN=mm. The variable n in
these plots is a scale factor on the thickness t2, relative to the baseline
2.48-mm value for a symmetric joint (n ¼ 1 and E1t1=E2t2 ¼ 1).
Accordingly, the modulus E2 is scaled by 1=n so as to maintain a
constant product E2t2.

In Figure 13, investigating the effect of changing t1, Nf is found to
increase as t1 is increased for any set of E2 and t2 (i.e., contours of n).
This is due to the increase in stiffness of either adherend generally
causing a reduction in the peak stresses at x ¼ �c as a result of a
more evenly distributed shear stress profile. For any given stiffness
ratio, there exists an optimum thickness for adherend 2, as indicated
by the cusp in each contour. For example, for a joint with
E1t1=E2t2 ¼ 0:333, the strongest joint would be one with n ¼ 0:5 (i.e.,
t1 ¼ 0:827mm, E1 ¼ 27:7GPa, t2 ¼ 1:24mm, and E2 ¼ 55:4GPa). This

FIGURE 12 Constitutive behavior of typical epoxy adhesive.
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cusp exists because the changing location at which the yielding of the
adhesive is predicted to occur. To the right of the cusp, yielding occurs
at x ¼ c, while to the left, yielding occurs at x ¼ �c. At the cusp itself,
yielding would occur simultaneously at both sides of the joint. Finally,
in Figure 13, stronger joints are achieved over the range of changing t1
values by proportionally adjusting t2: higher n for increasing t1, and
lower n for decreasing t1.

Nf is found to increase when independently increasing E1, as indi-
cated in Figure 14, for any set of E2 and t2 (i.e., contours of n) because
of the same reasons mentioned previously related to increasing adher-
end in-plane stiffness. Optimum joints are clearly identified by the
cusps in each contour for each E1t1=E2t2 ratio. Stronger joints are
achieved over the range of changing E1 values by proportionally
adjusting E2 (lower n for increasing E1 and higher n for decreasing
E1). For the case of varying E1 to change the E1t1=E2t2 ratio, failure
locations to the left and right of the cusp points in Figure 14 are the
reverse of the thickness (t1)-based sweep in stiffness ratio. Locations

FIGURE 13 Elastic limit load for t1 variation.
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to the left of the cusps indicate failure at x ¼ c, while to the right, failure
occurs at x ¼ �c. This reversal was observed in the previous case studies
for which shear and peel stresses are plotted in Figures 10 and 11.

Figures 13 and 14 show that the thickness andmodulus of the adher-
ends independently affect joint strength, whereas purely shear-lag-
based analyses [1, 2] that do not account for adherend bending effects
predict that the elastic-limit load would scale only with the in-plane
stiffness (product of thickness and modulus) and, thereby, would pre-
dict that the different contours in Figures 13 and 14 would collapse into
a single trend. Therefore, the strength of the joint depends on both the
in-plane stiffness as well as the bending stiffness of the adherends.

CONCLUSIONS

A closed-form model to predict the shear- and peel-stress profiles
for a generally asymmetric single lap joint has been derived
based on a coupled shear lag and beam-on-elastic-foundation

FIGURE 14 Elastic limit load for E1 variation.
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model. The following conclusions can be made based on the analysis
results:

1. The self-induced eccentricity moment boundary conditions are a
crucial component for accurate shear- and peel-stress prediction.
Numerical empirical relationships between these eccentricity
moments and statically calculated geometric moments are found
and verified by FEA case studies.

2. The closed-form model predictions of peel- and shear-stress profiles
are most accurate for symmetric joints. For asymmetric joints, the
model predictions are more accurate for modulus eccentricity than
for thickness eccentricity.

3. Cases analyzed show that the closed-form model always overpre-
dicts maximum values of shear and peel stress relative to FEA near
the free ends of the joint. This is due to the limitations of the shear-
lag-based model, which does not satisfy the traction-free bound-
aries at the adhesive-free surfaces. In practice, there will always
exist a spew fillet of adhesive and, thus, the shear stress does not
need to truly go to zero at the joint ends. Finally, the overprediction
of shear and peel stresses insures that this model will always make
conservative predictions.

4. Failure of the joint is found to be strongly dependent on both the
in-plane stiffness and bending stiffness of the adherends. The
analysis developed herein allows for one to account for asymmetric
joints in closed form, thereby aiding in seeking optimal joint config-
urations. The model predicts location of initial yielding of the
adhesive depending on whether asymmetry exists as a result of
thickness or material modulus differences.
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APPENDIX

Nondimensional terms used in the compact expression of the joint
solution:

h1 ¼ ebc sinðbcÞ; ðA1Þ

h2 ¼ ebc cosðbcÞ; ðA2Þ

h3 ¼ e�bc sinðbcÞ; ðA3Þ

h4 ¼ e�bc cosðbcÞ; ðA4Þ

h5 ¼ h33 þ h34 � h1ðh3 � h4Þðh1 � 2h2Þ þ h3h4ðh3 þ h4Þ � h22ð3h3 þ h4Þ;
ðA5Þ

h6 ¼ �h31 þ h32 þ h3ðh1 þ h2Þðh3 þ 2h4Þ þ h1h2ðh1 � h2Þ þ h24ð3h1 � h2Þ;
ðA6Þ
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h7 ¼ �h33 þ h34 � h2ðh3 þ h4Þð2h1 þ h2Þ þ h3h4ðh3 � h4Þ þ h21ðh3 � 3h4Þ;
ðA7Þ

h8 ¼ h31 þ h32 � h4ðh1 � h2Þð2h3 � h4Þ þ h1h2ðh1 þ h2Þ � h23ðh1 þ 3h2Þ;
ðA8Þ

and

h9 ¼ 2b2½h41h
4
3 þ h42h

4
4 þ 2ðh1h2 þ h3h4Þ2

� 2ðh1h3 þ h2h4Þ2 � 6ðh1h4 þ h2h3Þ2 þ 4h1h2h3h4�: ðA9Þ

Constants C1 to C4 used with Equation (15):

C1 ¼ 1

h9
h6

M1

D1
� h5

M2

D2

� �
; ðA10Þ

C2 ¼ 1

h9
h8

M1

D1
� h7

M2

D2

� �
; ðA11Þ

C3 ¼ 1

h9
h5

M1

D1
� h6

M2

D2

� �
; ðA12Þ

and

C4 ¼ 1

h9
h8

M2

D2
� h7

M1

D1

� �
: ðA13Þ

Integration constants C5 and C6 in Equations (34) and (35):

C5 ¼ 1

2b
cosðbcÞ e�bcð�C1 þ C2Þ þ ebcð�C3 � C4Þ

� �

� 1

2b
sinðbcÞ e�bcðC1 þ C2Þ þ ebcðC3 � C4Þ

� �
ðA14Þ

and

C6 ¼ � 1

2b
cosðbcÞ ebcð�C1 þ C2Þ þ e�bcð�C3 � C4Þ

� �

� 1

2b
sinðbcÞ ebcðC1 þ C2Þ þ e�bcðC3 � C4Þ

� �
: ðA15Þ
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Constants C7–C13 used in the adhesive shear strain solutions,
Equations (41) and (42):

C7 ¼
1

k sinhð2kcÞ �j1 coshðkcÞ þ j2 coshðkcÞ½ �; ðA16Þ

C8 ¼
1

k sinhð2kcÞ j1 sinhðkcÞ þ j2 sinhðkcÞ½ �; ðA17Þ

C9 ¼ � 2ðC1 þ C2Þkgb2 þ ðC1 � C2Þkgk2

2bð4b4 þ k4Þ
; ðA18Þ

C10 ¼
2ðC1 � C2Þkgb2 � ðC1 þ C2Þkgk2

2bð4b4 þ k4Þ
; ðA19Þ

C11 ¼
2ðC3 � C4Þkgb2 þ ðC3 þ C4Þkgk2

2bð4b4 þ k4Þ
; ðA20Þ

C12 ¼
2ðC3 þ C4Þkgb2 � ðC3 � C4Þkgk2

2bð4b4 þ k4Þ
; ðA21Þ

and

C13 ¼ � f

k2
: ðA22Þ

j1 and j2 are used in Equations (A16) and (A17):

j1 ¼ � Nx

E2t2ta
þ t2
2D2ta

M2 � be�bc ðC9 þ C10Þ cos bc� ðC10 � C9Þ sin bc½ �

� bebc ðC12 � C11Þ cos bcþ ðC11 þ C12Þ sin bc½ � ðA23Þ

and

j2 ¼ Nx

E1t1ta
þ t1
2D1ta

M1 � bebc ðC9 þ C10Þ cos bcþ ðC10 � C9Þ sin bc½ �

� be�bc ðC12 � C11Þ cos bc� ðC11 þ C12Þ sin bc½ �: ðA24Þ
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